Dynamics in organic ionic liquids in distinct regions using charged and uncharged orientational relaxation probes.

نویسندگان

  • Kendall Fruchey
  • M D Fayer
چکیده

The temperature-dependent fluorescence anisotropy decay (orientational relaxation) of perylene and sodium 8-methoxypyrene-1,3,6-sulfonate (MPTS) were measured in a series of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (alkyl = ethyl, butyl, hexyl, octyl) organic room temperature ionic liquids (RTIL). The two fluorescent probe molecules display markedly different rotational dynamics when analyzed using Stokes-Einstein-Debye theory, demonstrating that they are located in distinct environments within the RTILs and have very different interactions with their surroundings. Perylene rotates with subslip behavior, becoming increasingly subslip as the length of ionic liquid alkyl chain is increased. The dynamics approach those of perylene in an organic oil. In contrast, MPTS shows superstick behavior, likely reflecting very strong coordination with the RTIL cations. These results are consistent with different elements of rotational friction within the ionic liquid structure, which are available to solutes depending on their chemical functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.

Optically heterodyne-detected optical Kerr effect experiments are applied to study the orientational dynamics of the supercooled ionic organic liquids N-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (PMPIm) and 1-ethyl-3-methylimidazolium tosylate (EMImTOS). The orientational dynamics are complex with relaxation involving several power law decays followed by a final exponential de...

متن کامل

Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces.

Atomistic molecular dynamics simulations have been performed to study microscopic ionic structures and orientational preferences of absorbed [BMIM] cations and four paired anions ([BF4], [PF6], [TFO] and [TF2N]) on quartz surfaces. Two chemically different quartz surface models were adopted: one is saturated with silanol Si(OH)2 groups, and the other one is covered by silane SiH2 groups, respec...

متن کامل

Designer molecular probes for phosphonium ionic liquids.

Investigations into the extent of structuring present in phosphonium based ionic liquids (ILs) have been carried out using photochromic molecular probes. Three spiropyran derivatives containing hydroxyl (BSP-1), carboxylic acid (BSP-2) and aliphatic chain (C(14)H(29)) (BSP-3) functional groups have been analysed in a range of phosphonium based ionic liquids and their subsequent physico-chemical...

متن کامل

Simulations of the structure and dynamics of nanoparticle-based ionic liquids.

We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear or three-arm counterions, which also act as the solvent. A comparable uncharged model of nanoparticles with tethered chains is also studied. The pa...

متن کامل

Solvation dynamics in imidazolium and phosphonium ionic liquids: Effects of solute motion

Experimental and simulation results of solvation dynamics in ionic liquids have so far been explained in terms of translational motion of the ions constituting the ionic liquids under investigation. A recent theoretical study [Kashyap & Biswas, J Phys Chem B, 114 (2010) 254] has indicated that while translational motion of the constituent ions is indeed responsible for Stokes’ shift dynamics of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 8  شماره 

صفحات  -

تاریخ انتشار 2010